K. V. Chai, A. Khanifar, D. B. Rutan, A. Cova | 2014
Abstract: A Dynamic Digital Pre-Distortion (DDPD) system is disclosed to rapidly correct power amplifier (PA) non-lincaiity and memory effects. To perform pre-distortion, a DDPD engine predistorts an input signal in order to cancel PA nonlinearities as the signal is amplified by the PA. The DDPD engine is implemented as a composite of one linear filter and N-1 high order term linear filters. The bank of linear filters have programmable complex coefficients. To compute the coefficients, samples from the transmit path and a feedback path are captured, and covariance matrices A and B are computed using optimized hardware. After the covariance matrices are computed, Gaussian elimination processing may be employed to compute the coefficients. Mathematical and hardware optimizations may be employed to simplify and reduce the number of multiplication operands and other operations, which can enable the DDPD system to fit within a single chip.